

# CANDU Safety #9 - Grouping & Separation

Dr. V.G. Snell
Director
Safety & Licensing



#### Purpose of Grouping & Separation

- ρ protection against events affecting a limited area of the plant
- λ common cause failures:
  - turbine disintegration and resultant missiles
  - fires
  - small aircraft strikes
  - failure of common support system
  - common adverse environment
- **a** ensure that functional interconnections between systems do not change effectiveness for accidents



# Two Group Design Philosophy

- a ensure two independent ways to achieve same safety functions:
  - shutdown
  - remove decay heat and/or prevent release of radioactivity
  - monitor the plant
- **λ** group safety-related systems into two groups
  - Group 1 and Group 2
- reactor building is a natural barrier for some common cause events
  - both Group 1 & Group 2 systems are within reactor building



# Three Types of Safety-Related Systems

- **λ** special safety systems
  - shutdown system 1, shutdown system 2, ECC, containment
- **λ** safety support systems
  - provide electrical power, instrument air & cooling water to special safety systems
- **λ** safety-related process systems
  - process systems which can mitigate an accident



## **Grouping**

- **λ** each safety-related system assigned to one Group
- **λ** each Group can independently perform all the safety functions
- λ Group 1
  - power production systems
  - some of the special safety systems
  - safety support systems required by these special safety systems
- λ Group 2
  - the remaining special safety systems
  - safety support systems required by these special safety systems



#### Systems Within Groups

#### **Group 1**

Normally Operating Process Systems
Shutdown System 1
Emergency Core Cooling System
Safety Support Systems

#### Group 2

Shutdown System 2
Containment
Safety Support Systems
(EPS, EWS)

Interconnection of support services
Group 1 to Group 2 in Normal Operation
Group 2 to Group 1 in accidents
Group 1 to Group 2 in accidents



# System Grouping by Safety Function

| Safety<br>Function        | Group 1 Systems                                                                       | Group 2 Systems                      |
|---------------------------|---------------------------------------------------------------------------------------|--------------------------------------|
| Shutdown                  | Reactor Control System Shutdown System 1                                              | Shutdown System 2                    |
| Heat Removal<br>From Fuel | Heat Transport System Steam & Feedwater Systems Shutdown Cooling System ECC Moderator | Emergency Water System               |
| Contain<br>Radioactivity  | Reactor building air coolers                                                          | Containment & containment subsystems |
| Monitoring & Control      | Main Control Centre                                                                   | Secondary Control Area               |



#### Rationale

- two shutdown systems are in separate groups so that a single event cannot prevent shutdown
- **ECC** and containment are in separate groups so that a single event cannot damage fuel and allow radioactivity to escape
- **a** on CANDU 9, the grouping of containment and ECC has been switched for convenience in cable routing



# Safety Support Systems

| Safety Support<br>Function | Group 1 Safety<br>Support                           | Group 2 Safety<br>Support          |
|----------------------------|-----------------------------------------------------|------------------------------------|
| Electrical power           | Class IV Class III diesels Class II Class I         | EPS Diesels<br>Class II<br>Class I |
| Service Water              | Raw Service Water<br>Recirculating<br>Service Water | Emergency Water<br>System          |
| Instrument Air             | Instrument Air<br>System                            | Local Air Tanks                    |



#### Separation Between Groups

- outside reactor building, Groups in different areas of the plant
- λ typically 90 degree separation
- separate buildings for Emergency Power System diesels, Emergency Water System
- inside reactor building: barriers and physical separation to extent practical
- **x** separation barrier or distance assessed to show adequacy
  - fire, missiles, harsh environment
- main control room protected from steam line breaks and external events so operators can proceed to SCA; access route protected



# **Plant Layout**





#### Avoidance of Common Cause Failures

- **»** where specified separation cannot be achieved:
  - show no credible hazard in area
  - another Group 2 system outside the area will mitigate
  - system or component protected by barrier
  - system or component is fail safe
  - component designed to withstand hazard
- β Group 2 systems generally seismically qualified
- λ location above flood levels



## Instrumentation Cable Designations

| System<br>Group | System Name                          |              | Channel<br>Designation |                        |
|-----------------|--------------------------------------|--------------|------------------------|------------------------|
| 1               | Reactor Regulating System            | A            | В                      | C                      |
| 1               | Shutdown System No. 1                | D            | ${f E}$                | ${f F}$                |
| 1               | <b>Emergency Core Cooling System</b> | K            | ${f L}$                | ${f M}$                |
| 2               | Shutdown System No. 2                | $\mathbf{G}$ | H                      | J                      |
| 2               | Containment System                   | $\mathbf{N}$ | P                      | Q                      |
| 1               | <b>Emergency Core Cooling System</b> | KK           | $\mathbf{L}\mathbf{L}$ | $\mathbf{M}\mathbf{M}$ |
|                 | (seismically qualified)              |              |                        |                        |



## Separation Within Groups (Examples)

- safety system triplicated instrumentation channels within a group separated by 1.5 metres
- power supplies split into "ODD" & "EVEN" to serve redundant components within a Group
- **μ** "ODD" & "EVEN" cables separated by 1.5 metres
- x single channels within same Group can share common routing (e.g., A, D, K)
- **λ buffering of connections between Main Control Room & SCA**
- **λ power cables >600 volts must be 0.45m. above instrumentation cables**



#### Isolatable or Buffered Interconnections - 1

- **A Buffered control and instrumentation cables between the Main Control Room and the Secondary Control Area** 
  - to enable Group 2 equipment to be controlled from the Main Control Room
- **λ** Buffered post-accident monitoring and control cables
- Electrical power supply from the grid or from the turbine generator to Group 2 components, where required for reliability
- **Cooling water supply from Group 1 to Group 2 components,** where Group 1 supplies remain available or can be reestablished for long-term reliability



#### Isolatable or Buffered Interconnections - 2

- Compressed air supply from Group 1 for the supply of air storage tanks during normal operation of the plant
- Support services from Group 2 (i.e., EWS, EPS) to Group 1 Special Safety Systems and other safety related components (e.g., supplies to ECC)
- **a** interconnections must ensure that failures cannot propagate from one Group to the other



# LWR Approach (simplified)





#### CANDU Approach (simplified)



- redundancy within each Group
- qualification determined by safety function



#### Summary

- common cause failures handled by grouping & separating mitigating systems
- **λ** each group can perform key safety functions
- separation protects against common cause failures of both groups
- groups have limited cross-connections to increase reliability of mitigation for more frequent events
- **A** diversity is more important than redundancy
- a qualification depends on each specific accident to be mitigated